USING ARTIFICIAL INTELLIGENCE TO ASSIST FORMAL VERIFICATION & | Burnett

uck | Honors College

Abstract ’ Hypothesis & Methods

o o
The current hypothesis is that with enough data ingested, LLMs can do basic logical Dlscuss'°n

. equivalence. The current method is asking it to do Logical Equivalence with two designs In general, most of the models that have been
based on the specification, after providing it with the designs and specifications. One of the tested such far, especially local / open-source
designs has been previously verified to follow the specification, while the other has not, . models, have lacked the context necessary to
which will allow for the comparison of the unverified design to the specification to ensure provide very useful assertion properties without
compliance. additional inputs.

e The dataset will include the intended specification in addition to the two designs being compared

To ensure electronic hardware is free from design defects that
would impact its quality, it Is necessary to verify that it
functions as intended. Formal Verification is one method of
functional verification utilized in today’s hardware design and
development process. This method allows engineers to
mathematically prove that the electronic hardware designs
behave as expected. In practice, it takes time and experience to
create Formal Verification assertions in SystemVerilog, a
anguage commonly used in industry, since writing effective
oroperties requires a deep understanding of the
nardware. Large Language Models (LLMs) may provide support
to engineers to alleviate this gap and assist them in verifying :
designs. Using two selected RISC-V processors, multiple large i/
language models are used to generate SVA (SystemVerilog "l e Two RISC-V Algorithmic Logic Units for logical equivalence. One has been verified to a given specification while
Assertions) that can be used to verify the design in a formal P A

environment. Results from the models are compared to

human-developed assertions and Compared for clarlty, e Askthe LLM if the designs are Logically Equivalent, along with any reasoning or proof behind its answer.

completeness, and accuracy. i B Future work will be on expanding the scope of how
o LLMs can assist engineers with performing Formal

It appears, however, that it will be possible to
» generate acceptable responses to the
é equivalence prompts if relevant documentation

e Several fine-tined locally-hosted models are being evaluated for their output after being provided the relevant N such as speC|flcat|on documents and kﬂOWﬂ-gOOd
pOlatBi verified designs are passed into the model.

e Record the data and attempt to either generate a better response if inaccurate or test with more complex data if Verification. In addition, we will start to perform
AT, SNieIPhtylacCuiate: ' Formal Property Verification to directly verify a design

i from a specification after this work with Logical

KRERCRST R AR 2 P o s, A NSRS L mamd®d Equivalence Checking, in which more complex
e e T T TN IR P& specification documents will likely be used to test
how much the model can assist engineers with this

. " . ..) . ..'.'..o\..
. - -

urrent W

—— Nt R

¥ Motivation/Problem

A \ LT . 3 . /" | Off-the-shelf models have proven to lack the context necessary to generate relevant
Formal Verification is a specific subset of Functional /---/
ey . : ST OH oy assertion properties to verify a singular design. AT
Verification that involves an in-depth knowledge of verification, . . . ;
~— : . . ; : 7/ The following are attempts at generating a simple statement to check a single value on two \
N TN along with the RTL design files to fully verify a design. : g
| : . s [e = different models. s
Compared to simulation-based verification, utilizing this is ' IR S . .
more Complete and can lead tO greater Coverage Of the dGSlgn In SystemVerilog Assertions (SVA), you can use the assume keyword to specify assumptions about your . You | . ' ThIS Work 15 funded by AMD through |tS Undergraduate
Compared tO dlreCted or ConStralned random teStlng, A design. Here's how you can write an SVA assertion to assume that a 7-bit opcode is set to 0x33: Write a SystemVerilog assertion to assume that a 7-bit opcode is set to 0x33. % | ResearCh FellOWShlp prOgram at the Un|VerS|ty Of
" . Al o - .
a5 sume (@(posedge clk) opcode == 77be116011); To write a SystemVerilog assertion assuming that a 7-bit opcode is set to 0x33, you can define a property and then Central Florlda.
check the condition in an assertion block as follows:
BeCaUSG Of these advantages, |t WOUld be |deal |f a Way COUld 7 This assertion assumes that at every positive edge of the clock, the opcode Is equal to 7'b8118811 (which

. . . . - ty OPCODE_IS 33 (i t wi 6:8] OpCode);
Is the binary equivalent of hexadecimal @x33). Please replace c¢lk and epcode with your actual dock and il 1533 (input wire [6:8] OpCode);

be created to allow engineers to perform this task more quickly /o R OPCODE_15_33 - (OpCode == 8x33);
and easily, and potentially allow those with less experience to ’ assert(PCODEIS.3)
be able to perform more trivial tasks.

tdisplay("Warning: OpCode should be egual to @x33 but found %hH imstead.”, OpCode);

Good Example — GitHub Copilot/ GPT-4 }

In this example, we first create a property O0PCODE_IS_33 which checks if the given input opcode matches the
desired value 0x33. Then, we use an assertion statement to check whether the property holds true or not. If it

Large Language Models are a hot topic and have been A4 dossn, the warning message will be displayed.

researched for their effectiveness in creating designs. As we) Bad Example - Fine-Tuned MistralAl
can ingest our own data, we want to see if these models can |
easily use that information to assist an engineer perform
formal verification without having to spend as much time to
develop a complete understanding of the design.

Now focusing on providing context to models in the form of existing Algorithmic Logic Unit
Designs. This can allow for verifying a design directly to a specification document (Formal
Property Verification) or to an existing known-good design (Logical Equivalence Testing).
Currently focusing on Logical Equivalence Testing and comparing to human-generated
responses.

Known-Good Design 1 Unknown Design 2

	Slide 1

