In contrast to one of the prior state-of-the-art works
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This work makes use of genetic algorithms (GAs) which are configured to use single-point,
order-based crossover. Populations of 2000 genotypic individuals were intiialized and
evaluated with their size as detailed in the problem model figure. The cost for each
sequence is then used as the fitness, allowing us to optimize circuits in the EDA workflow as
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physically perform computation through write operations to . for EDA can therefore be explored.

memory. Sequencing these operations is a computationally Benchmark Common Genetic

difficult problem which is directly correlated with the cost of . : ST -

solutions using MAGIC based in-memory computation. SAGA Circutt Synthesis Optimization ooz

models the execution sequences as a topological sorting (16 0 x1 x5 x3 F w I

problem which makes the optimization well-suited for genetic - :cfibf@@ﬂlfzz 3 Cireu e ‘ Utu re o r (
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for evaluating each of these circuits is decreased by up to 52% / winedtimerovemen ol throughoutthe synthesis pipeline

from existing, greedy-algorithm-based optimization solutions. . Hyperparameter configurations conducive to

Over the benchmarks evaluated, these modifications lead to an quick.ly converging upon a suitably optimal

overall improvement in the efficiency of in-memory circuit solution

evaluation of 128% in the best case and 27.5% on average. . Optimizations which can reduce the required
synthesis time of this process in order to improve
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The von-Neumann architecture has a bottleneck which limits
the speed at which data can be made available for
computation. To combat this problem, novel paradigms for
computing are being developed. One such paradigm, known as
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() Table 1: Performance comparison between this work and prior works. Improvements detailed are the percentage decrease in fClats R ol : JRADP O
o o cycles and area and the percentage improvement to overall efficiency using the efficiency metric defined in [4]. Cycles are
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measured in the number of operations needed to fully compute the formula. Area is the number of memory cells needed. Ny
Efficiency is calculated according to the formula Efficiency = 10° - Area™' - Cycles™'. Efficiency metrics have been rounded to the e c ( n ow e g e m e n s

. o o nearest whole number for display, greater is better. NS
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